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ABSTRACT

The work is devoted to the theoretical analysis of contact melting by the migrating heat source with

an arbitrary shaped isothermal heating surface.After the substantiated simplification the governing equa-

tions are transformed to thc convenient for engineering calculations relationships. Analytical solutions

are used for numerical prediction of optimal shape of the heating surface. Problem is invcstigctcd for the

constant and for tcmpcraturc dependent physical properties of the melt.

1. INTRODUCTION

Melting of solids by contact with a heating surface takes place in numero,,, natural and

technological processes. Thcse processes are cnumeratcd in thc previous works [2, 4, 12-14, 22] devoted

to contact melting problem and are divided into two groups. In one group the melting material lies on the

hcating surface and pressed against it by some external force (for instance, the forcc of the weight oF the

melting material). This situation arises when an unfixcd solid melts in an enclosure [1, 16, 22] and in other

contact melting devices uscd in industry [8]. Another group of applications involves a moving heat source

melting its way through the surrounding solid. This situation arises in such fields as welding [21], geology

[3], nuclear technology [9, 10] thermal drilling of rocks [4, 6, 18, 20] and glaciers [l l, 17, 19]. Thermal dril-

ling is commonly recognized now as the most effective method of boring glaciers. Boring rocks, sands and

soil by thermopenctrators is a relatively new method in mining engineering. It has some advantages in

comparison with traditional rotary drilling• The n:o_t considerable advantage of thcrmodrilling is that

three major facts of excavation (rock fracturing, debris removal and wall stabilization) are accomplished

in a single integrated operation.

This work is dcvotcd to the theoretical analysis of" the contact melting process by the moving hcating

source with an arbitrary shaped isothermal heating surface.

2. ANALYSIS

2.1. The physical model and governing equations.

Obviously every technological process where contact melting occurs has its own specific character. In

particular case of thcrmodrilling, it is contact melting with a great specific load and heat energy, with ar- /
Ibitrary shaped heating surface. Thcrmopcnctrators arc radiaUy symmetric and in some cases ring-shaped, _J
L_
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For toroidal, a large forming extracting core sample [6]. A schcmatic diagram I
with central hole for and the

of the contact melting for the thermodrilIing conditions is shown in Fig.l. Axisymmctric heater -1 is pen-

etrating into the melting solid -2 with the velocity V under the effect of applied external force F. The

thermopenetrator is separated from the solid with a layer of melt -3, flowing along the thin channcl be-

tween the heating surface _ _ and solid-Iiquid intcrfacc _ _. It is assumed that the solid-liquid interface

is a sharply defined surface and melting occurs prcciscly at temperature t_, melt flow is laminar and

two-dimensional. Molten layer is assumed to be incompressibIe Newtonian liquid with a temperature de-

pendent physical properties (except density). Experimental results [6, 15] indicated that the heat source ve-

locity attains its quasi-steady, constant value V soon ahcr initiation of rocking. This fact justif']cs the next

assumption of quasi-steady heat and mass transfer in the contact melting problem.

According to the physical model and assumptions enumerated above the governing differential equa-

tions of heat and mass transfcr in the molten layer can be written as follows:

div_ = 0

pL(E" _')_= G-- pj.Vp + divT

CLPL(_ • _TtL) = div().L'_]tL) + q) (])

where T is the deviator part of the tensor of internal stresses; g, p, t L are the liquids velocity, pressure

and temperature respectively; ¢ represents the dissipative terms in heat transfer equation; CL, PL, 2L liq-

uid properties defined in Nomcnclaturc; the rest of the symbols are standard.

It is convenient for further analysis to use two systems of coordinates fixed to the he.ring surfacc: cy-

lindrical coordinates (r, z) and local orthogonal boundary layer coordinates S and _ are i_.ticated in Fig. 1.

Transforming (1) to non-dimensional form and using the similarity method in a prcliminary analysis

the main dimensionless parameters and numbers arc gcncrated [7]:

\pLWct(= )'/'
C(t=-t ) 0,taLV C =

Pc --Vd Ste-- K h , K _ Re=Vp d/PL k"--, , =_ _--==. =--, ,
a L c CL

WP PeK aK 2
Br= " , Pc= _ K a-.'= , K =pLgd/W (2)

CLPL(t= -- t ) K ' ,t L '

All the quantities here are defined in the Nomenclature Each of the dimensionless numbers (2) has

an exact obvious physical meaning. In order to substantiate the simplification of the governing equations

(1), the analysis of the values of these non-dimcn _ional numbers for the concrete conditions of thermal

drilling of ice and rock was carried out. Dimensionless parameter Kh-- 10 -3- 10 -_ physically represents

the ratio of characteristic thickness of the molten layer and characteristic size of the heating surface d; cri-

terion Ks-- 10 -3 is the ratio of the characteristic mass force of the melt and external force; Reynolds

number Re-- 10 -6- 10-4; Brinkman number Br-- 10 -s- 10_ represents the viscous dissipation of heat in

the molten layer, Pccklet number Pc-- 10-- 100; Stefan number Stc_ 1-- 10; K a, K,-- 1.

After neglecting terms of 0(Kh, Kg, Re, Br) the governing nondimensiona] equations of heat and

mass transfer in the molten layer will take the following form:

L

1 _ Ou

R" gs (R'Hu) + _ = 0 (3)

H2dP 8 Ou-- (II--c2- ) (4)
ds 8r/ otI J
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PcCH(Hu, + u"vr/ o_/ c,r/

where r/= , P=p/w , S=s/d , H=h/Khd , tZ=pL/p _ , C=CL/C L

.m v p L v p L t L -- t
=2L/Z L, R=r/d , u - , u =--, 6== m ,R=R(s)-cquation of gcncrating

' Vp, p Vp. t h -- tm

(5)1

line

F h of heating surface _ 6; h = h(s) -thickness of the molten laycr mersurcd along the intcrnal normal to

Fh; v,, v, -longitude and transverse velocities in the molten layer; all the physical properties of liquid CL,
m .111 Ill

2L, PI. are nondimensionalizcd by their values CL,ZL,/Z L at temperature tin;reference temperature (

i'h--t m ) is determined after nondimensionalization of Stcfans condition,

_h--tm=PeKc(t_--t ) (6)

Here t_ is initial temperature of melting material. In the equation (3) v=0 corresponds to the

ring-shaped penetrator with a large central hole. In this case since the thickness of the liquid film is of

0(Kh) it is possible to ignore the axially symmetric behaviour of heat and mass transfer and to consider (r,

z) as the Cartesian coordinates; v = 1 corresponds to the continuous heating surface without hole.

The boundary conditions in dimensionless form are following

At the heating surface _ h(r/= 0)

u --u =0; 0=0h; (7)

Oh=(t h-t )/(th-- t ); t h is the unknown temperature on _ h

At the solid-liquid interface _ _(r/= 1)

dR
u =0; u_= ---ds, 0=0 (8)

H1 0r/l_._o0 =[ PccQ+ ( )/Ste ]; Q=(--_n )IE.; (9)

where 0,= (t,-t_. / (tin--t**), t, is a temperature of the solid material,n is an external rclativcly tomoltcn

layer normal to _ _.

For the pressure in the exit points ofthe molten layer s= s_ and s= s2

P(sl) = P(s2) = 0 (10)

Since when v= 1 it is only one exit point s= s: then in this case s t = 0 is the critical point where u, = 0

dP/ ds= 0.

The assumption of quasi-stationary heat and mass transfer couses the equality of external force F

and the force of internal stresses in the molten layer. This condition with the defined accuracy of 0(K h) in

non-dimensional form is [4]

2 f_21 - 2 2 RPdR (1 I)
R 2 -R I _,

The function Q in Stefan condition (9) is the non-dimensional density of heat flux to the solid from

surface _ _ Iffs value depends on the temperature distribution in the solid and is obtained from the solu-

tion of the heat transfer problem which is the same as the problem of temperature distribution in the sur-

rounding weldpool material [21]:

k 1
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' +--' + )=0; (12)
-- Pe-_- c_Z: R aK at_

0 [E. =1; lim 0 =0; 0,IEe =0_; (R,Z)=(r,z)/d; (13)
R2 +Zl_o_

0 r is temperature distribution on surface _" r, formed after melting (Fig.l). Problem (12) (1 3) was

solvcd in [4, 18] numerically by the boundary element method.

2.2. Analytical solutions

In [4] it was proved that boundary value problem (12), (13) admits an analytical solution as a func-

lion of one independent variable when and only when the generating curve F_of _[ _ is parabola. In

parabolic coordinates a and z related to lhe coordinates R and Z by R = z_z, Z = 0.5(a2-z 2) with boundary

conditions on _[ m; z =-c_,O,= 1, in infinity: x--_oo, 0,-_0, equasion (12) has the Following solution

i_.., Pc :. ,E.,-Pe :-

t:.lt-Tz )/ ltTzm), v= l

0,-- (J_e (J_'- (14)[eric z)/erfc _m )' v = 0

L

where eric(x) = _ cxp( -- )du, Ei( - x) = du x > 0
z " 1 U

According the formulae (9) and (14) the heat flux distribution on 3-"= is

--It 1
2 . 2

Pe e x fee El(--ce ), v= I

Q= /z: 2 / _" (15)
m + a x_ncecrfc(_), v = 0

where _2 = Pcr,_ / 2 Taking into account the fact that the distancc bctwcen _ h and X-"_ is thc value

of 0(K h) we can rewrite (15) with the accuracy of 0(K h)
2 . 2

_.2dR {_ El(--ce ), v=l
Q = Pe ° e _ / 4-a-a_erfc(7), v = 0

(16)

After simple "transformation of equations (3) and (4) with invoked boundary conditions (7), (8) and

(10) the velocities and pressure distribution in the molten Laver are obtained

_ R'+_ -- R;+_ [_r/o -- r/
u (v+ 1)HDR' _o # dr/ (17)

(R'+, R:+')I 3 --

u = (v+ l)R" _s[ D _o] (18)

p v+____ f '_ R'+_ - R'+'= " ds (19)
, R'H3D

where D f ' (r/"_ r/°) r/dr/, f' r/dr/ f'dll=-o r/° = : o-_- /ao #

_P= r/: o /z dr/

R. is a critical point which is determined by (19) and the boundary coudition P(sl) = 0 ]
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V R,+_= I_2 Rds /f '2 as
• ._ H3D ,: R'H3D

(20) 1

when v=litissupposcdthatR.=0

According the assumption Oh= const the temperature distribution in thc molten layer is sought as a

function of one independent variable rl

0 = 0(r/)

As follows from interracial condition (9) in this case

H dR -- H= const.

Last formulae (22) and (21) simplify equalities (18), (19)

1 dR
u .... _(.)

D ds

R,+_ R,+1

f'2 3R ' ds
| -- •

P- (v+ I)D , H

and heat transfer equation in the molten layer

Peg_0(r/) d0 d 0d0)
D dr/ dr/ "dr/

Integration of this equation with the associated boundary conditions

1

01,.,--0; -d01dr/,-'=HE; E-pQ R_ +_e
ds

reduce to the following relationship

1 PcH 1_0C
-- e×p(---ff-f --y dr/)dr/

puting in (27) r/= 0 the tcmpcraturc of thc hcating surfacc is dctcrmincd

_ 11 Pert _oC

0h--EHf° exp(-5- I.T dr/ dr/

(21)

(22)

(23)

(24)

(25)

(26)

(27)

(2S)

In order to simplify further computations assume that F h is specified by the equation Z = A(R-R. )2.

In this case heat flux distribution Q is determined by the equality (16), where

dR 1

ds _ + 4A:(R- R .)2

P(s) introduction into (I 1) yields
v+l v+l

1 I-R, R(R -R. )
dR (29)J

(R_ - R_)(_+ 1)_D., I + 4A_(R-- R. )'

whereR 1=R.=0 if v=l

One of the most important characteristics of contact melting is the heat energy rcmoval from the

heating surface to the melt. Combining heat energy definition in non-dimensional form

N-- 2nf R2 R ),d0)l odR
R,H (- "dr/ "-

with the equation (27) we have

/ J
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F N = r_(R2 _ R:I Pert "1c¢o)Ecxp(--_'- j 0-_-. dr/) (30)_

The quantity of heat energy calculatcd according (30) excesses the minimum heat power N O ,_hich is

necessary to sustain the chosen melting velocity V. In non-dimensional form

N o = _(R_ - R_)(I + I/Stc)

Here N o in comparison with N does not contain the energy ratc for hcating melt and useless heat

dissipation in the surrounding thermopcnetrator solid material.

The main scope of present paper is to elucidate the influence of the heating surface shape upon the

eiTectivety of the contact melting process. Defining efficiency of the heating surface as a ratio/] = N o / N
we'll have

I

flC091 + Ste exp( -- Pert / D -7 dr/) (31)fl = ---g--
_0 A

Equations (23), (24), (27)-(31) simulate heat and mass transfer processes in contact mclting problem

with the accuracy of 0(Kh). They are convenient for prediction of contact melting process for materials

with variable physical properties such as different kinds of rocks and sands.

When the physical properties of melt are constant (for example in the case of ice melting) equations

(l 7), (23), (24), (27), (28), (30), (31). allows the considerable simplification.

6(R "+I _R; +')
u = r/(l -- r/) (32)

(v + I)R'H

dR
u = ds r/2(3- 211) (33)

p= 12 ['" R'+l- R'+I
v + I J, _]-R ;° ds (34)

- I'0 ----EHexp(PeH / 2 exp[-PeHr/3(1 -- 0.5r/)]dr/ (35)

N n(R_ R2 Pert.= -- i)Eexp(- T-)

l

(I+S_c )exp( P2Hfl E ----)

(36)

(37)

3. RESULTS

Numerical prediction of u,, u,, P, H, O, fl and other quantities of interest is carried out for ice and

rock thermodrilling conditions. All the calculations of rock melting are based on equations (23), (24), (27)

--(31). Relatively complete description of basalt physical properties at high temperature is available in [5,

6]. Non-linear equation (27) is solved numerically by the iteration procedure. After this other quantities

are obtained automatically in a view of equations (23), (24), (28)--(31). As the initial estimate of iterative

process solution (35) is chosen. When the ice boring process is investigated formulae (29), (32)--(37) are

used. The values of ice physical properties one can find for example in [4, 17, 19]. Effectiveness of the

_eating surface is estimated by the value of parameter fl It is shown in previous works [4, 17l that in corn-]
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Parison with the other (cone-shaped, sphere-shaped, etc.) thermopcnctrators of the same power output I

the parabolic shaped pcnctrator attains the highest melting velocity, Thcrcforc present paper is devoted to

more detail analysis of contact melting with parabolic heating surface. The elongation of the s_, rFacc is

characterized by the value of shape parameter A. The results of numerically predicted efficiency as a func-

tion of A for different conditions of ice and rock melting are plotted in Fig. 2. Numerical results indicates

that for slow melting when heat transfer in the molten layer is of minor significance and in the contrary

the heat dissipation increases the flat heating surface (A < 1) is more cff'ccfivc. Vice versa for high speed

melting the heat energy rate in the tacit is dominating in comparison with the dissipation in surrounding

solid material. So in this case the elongate form of heating surface is preferable. According the calcula-

tions presented in Fig.2 there is the interval for melting velocities when the definition of the optimal shape

is not trivial. For toroidal pcnetrator (v= 0)and ice melting conditions 20 < Pc < 55; for non-coting

pcnetrator (v= 1) and rock melting cond,tions 40< Pc< 75. In order to find the maximum of fl and the

corresponding value of A, the derivative of ,8 with respect to A is calculated. When the problem is

non-linear and the physical properties of thc melt depend on tcmpcraturc the dcrivativc is calculatcd

numerically; when p, c, ,;. arc constants it is feasible to calculate fl'A analytically. In a view of relationship

(37) the equation/_A = 0 for computation ofthc optimal A can bc written as follows: -- PcH ' ^ E - E' ^

_0.

This simple cquation is solvcd by dividing segment in half mcthod.

L

NOMENCLATURE

A - shape parameter of the heating surface;

a - thermal diffusivity;

e - specific heat;

d - characteristic size of heating device;

F - external force;

G - mass force;

r, z - cylindrical coordinates defined in Fig.l;

r_- internal radius of the heating device;

r 2- external radius of the heating surface;

st, s,- coordinates of the end points of generating curve of the heating surface;

t - temperature; _-velocity of the molten layer;

v,, vn- longitude and transverse velocities in the molten layer;

V - melting velocity;

s,_- longitudinal and transverse local coordinates in the moltcn layer deFmcd in Fig. 1 ;

W-specific axial load from hcating device side (W

,8- efficiency;

F- generating curve of surface _. ;

2- thermal conductivity;

#-dynamic viscosity coefficient;

p- density;

a, "r- parabolic coordinates.

g - acceleration;

h - melt layer thickness;

L - latent melting heat;

P - pressure;

Q - heat flux density;

F
)

=(r_-- rl)
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Indices:

L - liquid phase;

s - solid phase;

* - critical point;

All the non-dimensional parameters, numbers and functions arc determined in the text: (2), (5), etc.

h - heating surface;

m - melting surface;

oo - value in infinite point.

L
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Schematic representation of the contact melting process:l-heating device, 2-melting solid,

3-molten layer.

/

.C
Y /

a6

OS

/
2 d d A

\ _=zr _____j.j

f°

/ /
, de"

..y/.,.
0 2 4 6 8 A

a b
Fig. 2. Ffficicncy fl as a function of shape parameter A.

a) Ice boring conditions; v = 0, R. = 3.2 (ring shaped pcnetrator)

b) Rock b6ring conditions; v = 1, R. = R l = 0 (non-coring pcnetrator)


